535/1 PHYSICS Paper 1 Sat 6th Feb. 2021

Uganda Certificate of Education TOPICAL REVISION QUESTIONS SET 6 OLEVEL PHYSICS

Paper 1

Topic: Fluids At Rest & In Motion

NAME:	STREAM:

INSTRUCTIONS:

Answer all questions in this paper.

Mathematical tables, side rulers and silent non-programmable calculators may be used.

These values of physical quantities may be useful to you.

Acceleration due to gravity = 10 m s^{-2}

Specific heat capacity of water = $4200 \text{ J kg}^{-1} \text{ K}^{-1}$

SECTION A: (18 Marks)

Answer all questions in this section.

Question 1:

Which of the following determines whether a body will float in a liquid?

- A. Weight of the body.
- B. Volume of the body.
- C. Surface area of the body.
- D. Average density of the body.

Question 2:

In a river, turbulent flow occurs

- (i). at the water falls.
- (ii). where there is a narrow opening.
- (iii). where the river is wide and deep.
 - A. (i) only.
 - B. (iii) only.
 - C. (ii) and (iii) only.
 - D. (i) and (ii) only.

Question 3:

Figure 5 shows forces U, F and W acting on a body A, falling freely in a fluid.

The body moves with a steady velocity when

$$A. \quad F + W = U$$

		U - F = W	
		U+W=F	
	D.	U + F = W	
Ques	tion 4	<u>:</u>	
An ai	rcraft	is able to experience a lift in air because,	
(i).	it can	adjust the shape of the wings to create less pressure a	bove the
(ii).	it can	adjust the shape of its wings to create less pressure be	low the
(ii). air.	_	adjust the shape of its wings to reduce its apparent we	eight in
	A.	(i) only.	
		(ii) only.	
		(i) and (iii) only.	
	D.	(ii) and (iii) only.	
Oues	tion 5	:	
A hol	low gl lume i	ass sphere of mass 60 g floats in water such that two-the sunder water of density 1g cm ⁻³ . Find the volume, in ca	_
Spire	A.	20	
	В.	40	
	C.	60	
	D.	90	
-	stion 6	o: low of a fluid in a pipe may be caused by	
(i).		ng the pipe narrow	
(ii).		g the pipe steeply	
		ng the fluid to flow slowly and uniformly.	
	A.	(i) only	
	B.	(i) and (ii) only	
		(i) and (ii) only	
		(i), (ii) and (iii).	
	ν.	ייין אייי (ייי) אייי (ייי)	

Question 7:

Fig. 2

Figure 2 shows a block of wood of volume $40~\rm cm^3$ floating in water with only half of its volume submerged. If the density of water is $1000~\rm kg~m^{-3}$, determine the mass of the wood under water.

- A. $40 \times 1000 \text{ kg}$
- B. $20 \times 1000 \text{ kg}$
- C. $40 \times 10^{-6} \times 500 \text{ kg}$
- D. $20 \times 10^{-6} \times 500 \text{ kg}$

Question 8:

A cork held under water rises to the surface when released because the upthrust it is

- A. greater than the weight.
- B. less than the weight.
- C. equal to the weight.
- D. equal to the weight of water displaced.

Question 9:

A solid, Q, sinks deeper in liquid, N, than in liquid, M, because the

- A. Up thrust on the solid is greater in liquid N than in M.
- B. Density of liquid M is greater than that of N
- C. Density of liquid N is greater than that of M.
- D. Surface tension of liquid N is less than that of M.

Question 10:

An object thrown from an airplane reaches a constant velocity known as terminal velocity because the

- A. weight of the body at a given place does not vary.
- B. some of the up thrust and the viscous force will be equal to the weight of the body.

	C.	some of the up thrust and the viscous force on the body is constant.
	D.	up thrust experienced by the body is constant.
-	stion 2	
		of the following is true about a hydrometer?
(i).		easures density of a liquid
(ii).		ensitivity is improved by narrowing its stem
(iii). (iv).		eading increases upwards on the stem along the large bulb.
	A.	(i), (ii) and (iii)
	B.	(ii) (iii) and (iv)
	C.	(i) (ii) and (iv)
	D.	(ii) and (iv) only.
-	stion 1	
	_	nerical ball falls through a column of oil with a steady velocity,
the t		
	Α.	downward force is greater than total upward force.
	В.	upward force is greater than total downward force.
	C.	upward force is equal total downward force.
	D.	upward force is zero.
-	stion 1	
A bal		s filled with hydrogen and released in the open air. It will rise
	A.	to a certain height and then float
	В.	to a certain height and then drop
	C.	to a certain height and then burst
	D.	indefinitely
_	stion 1	
		ole is introduced at the bottom of a jar containing mercury.
vv nic	_	of the following explains what will happen to the bubble? It will
	A.	Be pressed by the mercury column above and will
	D	burst.
	B.	Rise to the surface of the mercury while decreasing
		in size.

- C. Rise to the surface of the mercury while increasing in size.
- D. Remain in constant motion within the mercury.

Question 15:

A uniform tube with a narrowed middle part has three identical manometers attached to it as in the figure bellows

If a steady flow of a liquid is maintained in the direction indicated by the arrows, the height of the liquid will be

- A. greatest in X
- B. greatest in Y
- C. greatest in Z
- D. equal in X, Y and Z

Question 16:

When a balloon filled with hydrogen is released into the air on a calm day, it

- A. rises to definite height when the pressure inside and outside are equalized
- B. rises until the pressure inside reduces to zero
- C. rises for a while and then bursts
- D. comes to the ground and darts around.

Ouestion 17:

When a metal sphere is dropped in a viscous fluid, it eventually attains a steady velocity called

- A. turbulence velocity
- B. terminal velocity
- C. viscous velocity
- D. streamline velocity

A pie	ece of wood of volume 0.2 m ³ and density 600 kg m ⁻³ is placed in a d of density 800 kg m ⁻³ . The fraction of the wood submerged is: A. 0.15 B. 0.25 C. 0.75 D. 1.33	
	<u>SECTION B: (52 Marks)</u> Answer all questions in this section.	
_	stion 19: What is meant by upthrust ?	[1]
 (b).	An iron block of mass 3.2×10^3 kg and volume 0.6 m ³ is totally immersed in a liquid of density 1.56×10^3 kg m ⁻³ . Find the weigh the block in (i). air.	 nt of [1]
	(ii). the liquid.	 [2]
Ques (a).	stion 20: State one application of Archimede's principle.	 [1]
(b).	A piece of iron weighs 175 g in air and 153 g in water. Find the density of the iron.	

Que	stion 2	21:	
• •		What is meant by terminal velocity ?	[1]
	(ii).	State a factor that affects terminal velocity of a body falling i	 in a
		fluid.	[1]
(b).		ll bearing is released at the surface of a viscous liquid and	
		ved to sink through the liquid. Draw a velocity-time graph for on of the ball bearing.	tne [2]
Ωυσ	ction '	22.	
•	stion 2 Wha	t is meant by mass of a body?	[1]
(b).	(i).	A body whose weight in air is 52 N experiences an up thrust 12 N in a fluid. Find its apparent weight.	 t of [2]
		What happens to the weight of the body at a much higher	
	(ii). 	What happens to the weight of the body at a much higher altitude?	[1]
One	stion 2	23.	
(a).		e Archimedes' principle.	[1]
 (b).	A sol	id weighs 25.00 g in air and 19.0 g when submerged in water	··
	Find	the density of the material of the solid.	[3]

(a).	Stion 24: State the principle of flotation?	[1]
(b).	of it submerged, find the density of the material of the cube.	 1
(a).	stion 25: State two factors which affect terminal velocity.	 [2]
	Explain briefly how a person is able to drink using a straw.	
Que : (a).	stion 26: Define density .	 [1]
	A balloon is filled with hydrogen and sealed. Explain what happer when the balloon is released in air.	
•	stion 27: State Archimedes' principle.	
(b).	A rubber balloon of mass 5×10^{-3} kg is inflated with Hydrogen as held stationary by means of a string. If the volume of the inflated balloon is 5×10^{-3} m ³ , calculate the tension in the string. (density of Hydrogen = 0.080 kg m ⁻³ , density of air = 1.150 kg m ⁻³	

•••••		
-	tion 28:	- C
	d of volume 10^{-4} m ³ floats in water (of density 10^3 kg m ⁻³) with $\frac{3}{5}$	OI
	ume submerged Find the mass of the solid.	
		•••
(b).	If the solid floats in another liquid with $\frac{4}{5}$ of its volume submerged What is the density of the liquid?	-
••••••		
		••
•••••		•
-	tion 29:	
(a).	State Archimedes principle	
 (h)	A glass block weighs 25 N in air. When wholly immersed in water,	 the
(5).	block weighs 15 N. Calculate	
	(i). the up thrust on the block.	
	(ii). The density of the glass in $kg m^{-3}$	

Question 30: A balloon filled with 50 m ³ of hydrogen weighs 40 kg. The balloon is held in place by rope fixed to the ground. If the density of air is 1.2 kg m ⁻³ , find (a). the upthrust on the balloon
(b). the force needed to hold the balloon in place.
Question 31:
Velocity
A B Time
The above velocity –time graph represents the motion of a small sphere
dropped centrally down a tall column of a liquid.
(a). Name forces which act on the sphere and state their directions. [3]
(b). What happens to the sphere between A and B. [2]

Available at any of the following outlets:

Kampala (Nansana-Masitoowa); Iganga; Namutumba; Mbale, Badaka; Bukedea; Lira, Mbarara; Masindi.