PURE MATHEMATICS

Paper 1

Nov./Dec. 2020
3 hours

WAKISO-KAMPALA TEACHERS' ASSOCIATION (WAKATA)
 WAKATA MOCK EXAMINATIONS 2020
 Uganda Advanced Certificate of Education
 PURE MATHEMATICS

Paper 1

3 hours

INSTRUCTIONS TO CANDIDATES:

Answer all the eight questions in section \mathbf{A} and any five questions from section \mathbf{B}.
Any additional question(s) answered will not be marked.
All necessary working must be clearly shown.
Begin each answer on a fresh sheet of paper.
Silent, non - programmable scientific calculators and mathematical tables with a list of formulae may be used.

Neat work is a must!!

SECTION A (40 MARKS)

Answer all questions in this section.

1. By reducing to Echelon form, solve the simultaneous equations

$$
\begin{aligned}
& 2 x-y+z=5 \\
& x-3 y+2 z=2 \\
& 2 x+y+4 z=-3
\end{aligned}
$$

(05marks)
2. Solve the equation $1-\cos ^{2} \theta=-2 \sin \theta \cos \theta$, for $-180^{\circ} \leq \theta \leq 180^{\circ}$
(05marks)
3. Use first principles to differentiate $\frac{8}{\sqrt{x}}$ with respect to x.
(05marks)
4. Find the perpendicular distance from the point $P(4 i+2 j+2 k)$ to the line $r=3 i+j-k+\lambda(i-j+2 k)$.
(05marks)
5. Find the real values of k for which the equation $x^{2}+(k+1) x+k^{2}=0$ has real roots (05marks)
6. The point $A\left(a t^{2}, 2 a t\right)$ lies on the parabola $y^{2}=4 a x$ and B is the point $(-a, 2 a)$. M is the mid point of $A B$. Find the Cartesian equation of the locus of M as B moves on the parabola.
7. Show that $\int_{0}^{\frac{\pi}{2}} \frac{4 d \theta}{3+5 \sin \theta}=\operatorname{In} 3$
(05marks)
8. Solve the differential equation $(x+2) \frac{d y}{d x}=\left(2 x^{2}+4 x+1\right)(y-3)$ given that $x=0$ when $y=7$

SECTION B (60 MARKS)

Answer any five questions from this section. All questions carry equal marks.
9. (a) If Z_{1} and Z_{2} are complex numbers, solve the simultaneous equations $4 Z_{1}+3 Z_{2}=23, Z_{1}+i Z_{2}=6+8 i$, giving both answers in the form $x+y i$.
(05marks)
(b) Show by shading on an Argand diagram the region in which $2 \leq|Z-i| \leq 3$
(07marks)
10. (a) Show that the x-coordinates of any points of intersection of the line $y=m x+c$ and the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ are given by the solutions of the quadratic equation $\left(4+9 m^{2}\right) x^{2}+18 m c x+\left(9 c^{2}-36\right)=0$
(04marks)
(b) If the line $y=m x+c$ is a tangent to the ellipse in (a) above, prove that $c^{2}=4+9 m^{2}$.
(04marks)
(c) The line $y=m x+c$ in (b) above passes through the point (2,3). Write down a second equation connecting m and c, and hence prove that m must satisfy the equation $5 m^{2}+12 m-5=0$
(04marks)
11. (a) Find the equation of the normal to the curve $x^{3}+3 x^{2} y=2 y^{2}$ at the point $(-1,1)$
(b) Given that $y=x \sqrt{x+3}$, show that $\frac{d y}{d x}=\frac{3(x+2)}{2 \sqrt{(x+3)}}$.
(06marks)
(06marks)
12. (a) Prove that $\cos \left(45^{\circ}-\alpha\right) \cos \left(45^{\circ}-\beta\right)-\sin \left(45^{\circ}-\alpha\right) \sin \left(45^{\circ}-\beta\right)=\sin (\alpha+\beta)$
(05marks)
(b) If A, B, and C are the angles of a triangle, prove that $\cos A+\cos (B+C) \equiv 0$. Hence deduce that $\cos A+\cos (B-C)=2 \sin B \sin C$
(07marks)
13. (a) Express $\frac{6-2 x}{(x+1)\left(x^{2}+3\right)}$ in partial fractions.

Hence evaluate $\int_{-1}^{3} \frac{6-2 x}{(x+1)\left(x^{2}+3\right)} d x$.
14. (a) Lines L_{1}, L_{2} and L_{3} are given by equations $\frac{x+5}{2}=\frac{y-14}{-10}=\frac{z+13}{11}=\lambda$, $\frac{x-3}{2}=\frac{y+5}{-3}=\frac{z+17}{-5}=\mu$ and $x=y+5=\frac{z-7}{-2}=\gamma$ respectively.

Given that L_{1} intersects L_{2} at point A while L_{1} intersects L_{3} at B, find the distance $A B$.
(07marks)
(b) Find the coordinates of the point of intersection of the line $\frac{x+3}{2}=\frac{y-5}{-1}=\frac{z-2}{-3}=\mu$ and the plane $2 x+7 y+5 z-3=0$
15. (a) Prove by induction that $7^{n}+2^{2 n+1}$ is always divisible by 3 for all positive integral values of n.
(b) Given that the first three terms in the expansion in ascending powers of x of $(1+2 x)^{1 / 2}$ are the same as the first three terms in the expansion of $\frac{1+a x}{1+b x}$.
(i) Find the values of the constants \boldsymbol{a} and \boldsymbol{b}.
(ii) Hence show that an approximation of $\sqrt{2}$ for $x=-\frac{1}{100}$ is $\frac{1970}{1393}$.
(07marks)
16. In a certain type chemical reaction a substance A is continuously transformed into a substance B. Throughout the reaction the sum of the masses of A and B remains constant and equal to m. The mass of B present at time, t after the commencement of the reaction is denoted by x. At any instant the rate of increase of the mass of B is k times the mass of A, where k is a positive constant.
(a) Form a differential equation relating x and t, hence solve the equation, given that $x=0$, when $t=0$
(01mark)
(b) Given also that $x=1 / 2 m$ when $t=\operatorname{In} 2$, determine the value of k, and show that, at time $t, x=m\left(1-e^{-t}\right)$
(07marks)
(c) Hence find
(i) the value of x (in terms of m) when $t=3 \operatorname{In} 2$,
(ii) the value of t when $x=3 / 4 \mathrm{~m}$

